3.598 \(\int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=253 \[ \frac {(2 a A+b B) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {(a B+2 A b) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {B \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {B \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[Out]

(2*A*a+B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/
2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+(2*A*b+B*a)*(cos(1/2*d*x+1/2*c)^2
)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(
1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+B*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)-B*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/
2)*(a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.94, antiderivative size = 253, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.371, Rules used = {2955, 4031, 4108, 3859, 2807, 2805, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac {(2 a A+b B) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {(a B+2 A b) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {B \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {B \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

((2*a*A + b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[Cos[c + d*x]]
*Sqrt[a + b*Sec[c + d*x]]) + ((2*A*b + a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a
)/(a + b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*
a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) + (B*Sqrt[a + b*Sec[c + d*x]]*Sin
[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2955

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[((a + b*Csc[e + f*x])^m*(
c + d*Csc[e + f*x])^n)/(g*Csc[e + f*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4031

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(f*(m + n
)), x] + Dist[d/(m + n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 1)*Simp[a*B*(n - 1) + (b*B*(m
+ n - 1) + a*A*(m + n))*Csc[e + f*x] + (a*B*m + A*b*(m + n))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e,
f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && GtQ[n, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4108

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\\ &=\frac {B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a B}{2}+a A \sec (c+d x)+\frac {1}{2} (2 A b+a B) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a B}{2}+a A \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{2} \left ((2 A b+a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {1}{2} \left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{2} \left ((2 a A+b B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left ((2 A b+a B) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ &=\frac {B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {\left ((2 a A+b B) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left ((2 A b+a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{2 \sqrt {b+a \cos (c+d x)}}\\ &=\frac {(2 A b+a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {\left ((2 a A+b B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ &=\frac {(2 a A+b B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {(2 A b+a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {B \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 32.45, size = 52603, normalized size = 207.92 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

Result too large to show

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [C]  time = 2.86, size = 789, normalized size = 3.12 \[ \frac {\left (-1+\cos \left (d x +c \right )\right ) \left (1+\cos \left (d x +c \right )\right ) \left (2 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) a -2 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) b +4 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticPi \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \frac {a +b}{a -b}, \frac {i}{\sqrt {\frac {a -b}{a +b}}}\right ) b +B \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}\, a \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+2 B \cos \left (d x +c \right ) \EllipticPi \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \frac {a +b}{a -b}, \frac {i}{\sqrt {\frac {a -b}{a +b}}}\right ) \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a -B \cos \left (d x +c \right ) \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a +B \cos \left (d x +c \right ) \EllipticE \left (\frac {\left (-1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a -b}{a +b}}}{\sin \left (d x +c \right )}, \sqrt {-\frac {a +b}{a -b}}\right ) \sin \left (d x +c \right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, b -B \cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, a \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+B \cos \left (d x +c \right ) \sqrt {\frac {a -b}{a +b}}\, b \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}-B \sqrt {\frac {a -b}{a +b}}\, b \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}}{d \sqrt {\frac {a -b}{a +b}}\, \left (b +a \cos \left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )^{3} \sqrt {\cos \left (d x +c \right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x)

[Out]

1/d*(-1+cos(d*x+c))*(1+cos(d*x+c))*(2*A*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*El
lipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-2*A*cos(d*x+c)*sin(d*x+c)*((b+a
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b
))^(1/2))*b+4*A*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))
*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*b+B*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*(1/(
1+cos(d*x+c)))^(1/2)+2*B*cos(d*x+c)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((
a-b)/(a+b))^(1/2))*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a-B*cos(d*x+c)*EllipticE((-1+cos(d
*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*a+B*cos(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c
)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b-B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*(1/(1+cos(d*x+c)))^(1/2)+
B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b*(1/(1+cos(d*x+c)))^(1/2)-B*((a-b)/(a+b))^(1/2)*b*(1/(1+cos(d*x+c)))^(1/2))*
((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/(1/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^3
/cos(d*x+c)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^(1/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/cos(c + d*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(a + b*sec(c + d*x))/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________